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ON FORCED OSCILLATIONS OF LINEAR ELASTIC SYSTEMS WITH DAMPING* 

A-V. STEPANOV 

The concept of a transmission coefficient, which has been introduced for 
an elastic system with one degree of freedom 11-21, is generaIised to 
the case of an arbitrary linear elastic system of finite mass to which a 
linear visco-elastic absorber of general form is attached. For an 
elastic system with one degree of freedom the problem of the smallest 
absorber mass that gives a specified transmission coefficient is solved. 

Various optinality criteria for the parameters of an oscillation absorber have been 
considered, the most common one being the minimization of the transmission coefficient of the 
forcing term which takes a value that is a maximum in some frequency domain (perhaps the 
entire spectrum). Elastic systems with several degrees of freedom or absorbers have been 
investigated /3-5/, but only special cases have as a rule been solved. 

We shall consider an elastic system of finite mass M, occupying a known volume V and 
possessing known elastic and inertial properties. We will first specify the influence matrix 

K (N, N') and secondly the generalized density matrix p(N)(N and N’ are points in the 
volume Ir, with K(N, N') .= KT (N', N) and p(N) = pr (N)). In general the matrices K and p 
are of third order; their form depends on the system of coordinates. For a given elastic 
system there exists a spectrum of eigenfrequencies {Qj) and eigenfunctions (us (Nf) (i = 1, 
2 7 . . ., s; s,<oo is the number of degrees of freedom of the elastic system), satisfying the 
conditions 

L$* $ K (N, N') p (A") Uj (N’)dV (N’) = UJ (N) 

Y 

(where 8j, is the Kronecker 
now on vectors are assumed to 

delta and dV(N) is the volume element at the point N; from 
be columns). The influence matrix can be put in the form /6/ 

a u,wfu~Tw) 
K(N,N')=M-' xz *,, 

It describes the displacement of points of the elastic system under the action of a 
constant force applied to it. If this force is of the form &tF(N') per unit volume, where 
h is the characteristic index, (the most important practical case being when the quantity h 
is purely imaginary), then a particular solution of the integrodifferential equation of motion 
of the elastic system, derived in /7/, has the form &tU(N), where 

U(N)= 1 K,(N,N',b) F(N') dV(N') (1) 
Y 

is the displacement (both here and below to be taken relative to the equilibrium position) 
of the point N, while 

gl (N, N’, 1) = &f-1 9 “* (N) ukT (N’) 
& 

Ok’ + 3.p 

is the dynamic influence matrix, (K, = K when h = 0). 
We assumethat a linear visco-elastic absorber is attached to the elastic system at the 

points &,&, . . . . Ls; for j = 1, 2,. .., R the point &I can be displaced in the direction 
of the unit vector nl (Fig-l). Suppose furthermore that a lumped force dUF,, is applied to 
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a given point N’, where F, is constant. We shall find the displacement of an arbitrary 
point N under the action of this force and the reaction of the absorber. The required dis- 
placement should be of the form &W(N); we have to find the function U(N). 

Fig.1 

The total force acting on the elastic system is equal to 

where 6 is the Dirac delta function and F,j is a force to be defined, acting at the 

point Lj in the direction III (l,<j,< R). Substituting expression (2) into (l), we find 

that 

U (N) = K, (A', N', h) Fo + $I K, (iv, Lj, A) njF,j (3) 

If Zgj = IljTU (Lj) is the projection of the displacement of the point Lj onto nj (I,< 

i<RR), 
then it follows from equality (3) that 

If ulk = nfruk (Lj) for 1Q j < R, IQ k,< S, and vk is an R-dimensional vector with 

components V,h, Vlk, . . ., URRI then (4) can be written as 

Q(N', h)F, +G (k) F, = xo (5) 

xg = {rO,r xi,%, ., q,~)r F, = {F,,, F,,, . . ., FIR) 

(the matrix Q has R rows and a number of columns equal to the dimension of the vector F,, 
in the general case equal to 3; the matrix G is square and of order R). 

However, F, = -@@)%I, where C)(h) is the transmission matrix of the absorber (of order 
R; it defines the forces acting on the points of attachment of the absorber due to their 
displacement; this displacement and the forces caused by them should be proportional to & 

/7/. It then follows from relation (5) that 

I,, = IE + G (h) Q (h)lP Q (N', h) F, (6) 
F, = --I (1) Q (A", I) F,, '4' (h) = C'(h) IE + G (h)4, +)I-' 



257 

(E is the unit matrix of order R), while the displacement of an arbitrary point N under 
the action of the force 

VII, Pa, . - ., FIR are defined in (6)) is equal to eW,(N) where 

The displacement of the point N under the combined action of the SF (N’) force per 
unit volume and the absorber reaction is equal to &U (A'), where 

U (N) = SH (A’, N’, h) F (N’) dV (N) 

H (A’, N’, k) = Ki ‘N, N’, h) - QT (N, h) Y (3,) Q (N’, A) 

(7) 

The matrix H is a generalization of the influence matrix. 
The following can serve as an example of an optimization problem: an absorber of given 

construction and least possible mass is to be attached to an elastic system with given elastic 
and inertial properties SQ that the quantity 

maxljH(N, N’, iQ)[j 

has a given magnitude; this maximum is taken over all points N and N' of the elastic system 
and frequencies 62 within some given domain, [and in special cases, over the entire spectrum). 
As a norm one can take, for example, the largest of the moduli of the elements of the matrix 
H. In its general form this problem is very difficult. 

rr@l 

a 

Fig.2 Fig.3 Fig.4 

rJe will consider as an example a point mass M, attached to a fixed base by a spring of 
stiffness C; this mass is connected to an absorber in the form of a point mass m by means of 
a spring of stiffness c and a dashpot with viscous friction coefficient h; both masses (M 
and m) can be displaced in the direction of the unit vector n (Fig.2). In this system R= 
S=i and all matrices (K,,Q,G,cp,H) turn into functions of the characteristic index L. 
This only eigenfrequency of this elastic system without the absorber is&?,= (CiM)Y*. uI1= i, K,(h)= 
Q (V = G (I) = (C -+ MPf-f, @ @) = n3p @A+ c) (mli* + !A + c)" (see /7/j, while according to formula (7) 

The expression in curly brackets on the right-hand side of (8) is equal to the trans- 
mission coefficient introduced in /I, 21; the dimensionless matrix-function 

MR,sH(N, N', h). 

can serve as a generalization of this coefficient to the case of an arbitrary elastic system, 
H being defined by formula (7). 
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Applied to the problem under consideration, the optimization problem formulated above 
can be stated as follows: it is required to find the least possible value of 13 together 
with 2 and 0 such that for all real o the quantity 

k (0) = 1 (co* + iso - u) ((co* - 1) (69 + 1~61 - CT) + OoP (izo - @]-‘I 

is never greater than some specified a. From the approximate solution derived in /2/ it 
follows that an analytical criterion for optimality defined as above in terms of 8,~ and 0. 
is the presence in the function k (0) of two smooth maxima equal to CL at the point O= O, 
and o= oI (Fig.3). The conditions 

‘k (co_) = k (o+) = a, dkldo (&I_) = dkido (co+) = 0 (9) 

are a system of four equations with five unknowns: o-, o+,0,a and 0; the missing equation is 
the minimum condition on 6. The exact solution of this system is extremely difficult. 

One can express O_ and o+ in terms of new unknowns o0 and e: 

Of = eo(l + e)" (10) 

and show that for apI a minimum of 8 is reached if e=a-1. Numerical analysis shows that 
as a increases the quantity 8, found by solving system (9), depends more weakly on e. Hence 
one can assume that for all a the quantities ef can be defined by formulae (10) with e= a-l. 

Graphs of the values of 9,~ and e computed on the basis of this condition as functions 
of a are shown in Fig.4. For large a we have 8=2e-*,zzv/3a-1, and (r z 1 -44a-9; for a=1 
we have e = 2 (yS - 1) (a-* - I)-', z zz I/z(l/U+ 1) (~2 - 1)/8, and (I = (a' - 1)'/8. The excess of 8 over 
the value 2 (a' - i)_' obtained from the approximate solution /2/ tends to 24% as a-1+0, 
but already at CL= 1.1 it is 9%, while for CC= 2.5 it does not exceed 1%. 
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